Perryfields Junior School

Calculation Policy 2018

This calculation policy is intended to bring consistency, continuity and progression as methods build upon each other from year 3 to year 6 .
It is essential that rapid recall of key number facts is embedded prior to written calculations being taught. This is necessary as the written calculations outlined in this policy rely on mental strategies to process numbers efficiently and with confidence. Therefore, mental strategies are included within this policy.

The links between subtraction, addition, division and multiplication are constantly reinforced throughout all year groups. These are particularly relevant when looking at the number facts. The concept of the inverse operation will really help the children develop the ability to complete mental calculations and the term will be introduced to Year 3. Children will also be encouraged to use this to check their workings out.
Children's understanding of place value is central to all of these calculation processes. Developing an understanding of numeracy, quantity and the number system is of intrinsic importance to the ability to be successful in calculation. Therefore, structured place value apparatus (e.g. base 10) are on the tables when children are working through a new calculation method to help them see this relationship and to develop their understanding of the processes they are working through. This will provide visual images and models of the numbers and allow children to develop a strong sense of numeracy.

As part of every lesson, emphasis will be made on mathematical vocabulary and children should have access to written vocabulary at all times to ensure they can recognise and spell them as well as use it in their explanations.

Progression in fractions is described beneath the four main operations.

Year	Addition Subtraction
Y3	Mental MeChildren shAdd a 3-diAdd a 3-diAdd a 3-diWritten MeAdd numb1 4 2 4 +1 1 1 1 30 4 1 Mental Methods Subtract mentally a 3-digit number and ones Subtract mentally a 3-digit number and tens Subtract mentally a 3-digit numbers and hundreds Pupils will use counting on as an informal written strategy for subtracting pairs of $\mathbf{2}$ digit numbers: 58-43 Written Methods Subtracting with 2 and $\mathbf{3}$ digit numbers (introduce partitioned column subtraction method) Move on to exchanging tens, using apparatus to model, to develop children's understanding. Next step - moving on to hundreds, tens and units.
	MASTERY - The Big Ideas (NCETM) Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20. E.g. $8+7$, thinking of 7 as $2+5$, and adding the 2 and 8 to make 10 , then the 5 to 15 . This should then be applied when calculating with larger numbers. Subtraction bonds can be thought of in terms of addition: for example, in answering $15-8$, thinking what needs to be added to 8 to make 15 . Counting on for subtraction is a useful strategy that can also be applied to larger numbers. What do you notice? Is there a relationship between the calculations? Vocabulary hundreds, boundary, increase, vertical, , expanded, compact exchange, 'carry', decrease, hundreds, value, digits partition, Calculation, Calculate Addition, Subtraction, Sum, Total Difference, Minus, Less Column addition, Column subtraction Operation Estimate Inverse Operation

Mental Methods
Recall and use multiplication facts for the $2,3,4,5,8$ and 10 times tables, and multiply multiples of 10. e.g. $4 \times 8=$

- Either start with $4 \rightarrow$ double it (8), double it(16), double it(32)
- Or start with $8 \rightarrow$ double it(16) , double it(32)

Develop fluency in mental strategies using the commutative law e.g. $3 \times 11 \times 5=5 \times 11 \times 3=55 \times 3$
and the distributive law

$$
20+10=30
$$

Develop fluent mental methods to solve a range of problems

Written Methods

i. Multiply 2-digits by a single digit number develop understanding of use of arrays

ii. Introduce the grid method for multiplying 2-digit by single - digits: e.g. $\mathbf{3 4} \mathbf{x} 7$

Children should be confident in partitioning as well as multiplication knowledge.

x	30	4
7	210	28

Note: They may make errors with the multiplying aspect, although be fine adding the amounts together, which is easily shown using this method $210+28=238$
(Children to use an appropriate method for the addition)
iii. Introduce the formal written method for multiplying 2-digit by single - digits: e.g. 24×4

Mental Methods

Recall and use multiplication and division facts for the 2, 3, 4, 5, 8 and 10 times tables, (through halving connect the 2,4 and 8 tables) e.g. $32 \div 4=$ Start with $32 \rightarrow$ halve it(16), halve it(8)

Develop efficient mental methods e.g. using multiplication and division facts to derive related facts

Written Methods

Divide 2-digit numbers by a single digit - where there is no remainder in the final answer, then with remainders.

Model grouping on a number line
i. As repeated addition [counting on]

ii. As repeated subtraction [counting back]
$10 \div 3=$

This can also be done vertically - beginning 'chunking'

Short Division

When introducing - limit numbers to no exchanges... then with exchanges. Model division as grouping with PV discs.

(only with 2-digits not 3 as modelled)

Vocabulary

MASTERY - The Big Ideas (NCETM)

It is important for children not just to be able to chant their multiplication tables but also to understand what the facts in them mean, to be able to use these facts to figure out others and to use in problems. It is also important for children to be able to link facts within the tables (e.g. $5 \times$ is half of $10 \times$) They understand what multiplication means, see division as both grouping and sharing, and see division as the inverse of multiplication

What do you notice about the following calculations?	What is 3×4 ?	
3×4	3×8	What is 13×4 ?
4×4	4×8	Asking 'How did you get that?' can help you decide whether children are working
3×5	3×10	efficiently with questions like 13×4 by, for example, calculating 10×4 and adding $3 \times$ 4, and that 3×4 is not obtained by counting in 1 s.

exchange, decrease, hundreds, value, digits partition, grid method, multiple, product, tens, units, value
inverse, short division, 'carry', remainder, multiples
Multiplication table, Times table
Multiply, Multiplication, Times, Product Divide, Division
Inverse
Operation, Estimate

Year	Addition	Subtraction	
Y5	Mental Methods Add numbers mentally with increasingly larger numbers, using and practising a range of mental strategies i.e. add the nearest multiple of 10, 100, 100 and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds [practise for increased fluency]. Estimate and check solutions using mental strategies. All strategies lead to increased fluency. Written Methods Add numbers with more than 4 digits (including money, measures and decimals with different numbers of decimal places) Numbers should exceed 4 digits Moving on to add more than two values Pupils should: Understand the place value of tenths and hundredths and use this to align numbers with different numbers of decimal places. [Example: adding ' 0 ' as a place holder]	Mental Methods Subtract numbers mentally with increasingly larger numbers Children to use compact column subtraction once confident with the partitio Children to begin subtracting with larger integers before moving on to decimals. Zero can be added to empty decimal places (up to 2 dp) to aid understanding column. Pupils should: Be confident in solving subtraction calculations in a range of contexts, inclu	oned column method. $\begin{array}{r} 1214734 \cdot 10 \\ -562 \cdot 5 \\ \hline 1911 \cdot 5 \\ \hline \end{array}$ ing of what to subtract in that ding money and measures.
	MASTERY - The Big Ideas (NCETM) Before starting any calculation is it helpful to think about whether or not you are confident that mentally, but $3689+4756$ may require paper and pencil. Carrying out an equivalent calculation 2996 is equivalent to $3686-3000$ (constant difference). Set out and solve these calculations using a column method. Write four number facts that this bar diagram shows. $3254+$ \square $=7999$ $2431=$ \square -3456 6373- \square $=3581$ $6719=$ \square -4562	u can do it mentally. For example, $3689+4998$ may be done might be easier than carrying out the given calculation. For example 3682 - Captain Conjecture says, 'When working with whole numbers, if you add two 2-digit numbers together the answer cannot be a 4-digit number? Do you agree? Explain your reasoning.	Vocabulary Addition, Subtraction Sum, Total Difference, Minus, Less Column addition, Column subtraction Exchange Operation Estimate decimal places, decimal points, tenths, hundredths and thousandths

Year	Multiplication	Division	
Y6	Mental Methods Recall multiplication facts for all times tables up to 12×12. Derive new facts appropriate to for the given calculation. E.g. Example below Written Methods Short and long multiplication as in Y5, and multiply decimals with up to 2 decimal places by a single digit. When recording, decimal points should be aligned. Example: Multiply 0.25 by 0.2 Children should be able to: Use rounding and place value to estimate answers before calculating and use to check their answers.	Mental Methods Recall division facts for all times tables up to 12×12. Written Methods Divide at least 4 digits by both single-digit and two-digit numbers quantities) Short division, for dividing by a single digit: 'Ready Reckoner': 8, 16, 24, 32, 40, 48, 56, 64, 72, 80 Short division, for dividing by a 2-digit number: Use short division to divide a number with up to 4 digits by a 1 -digit or a 2 -digit number 476 r 5 $1 2 \longdiv { 5 7 9 1 7 7 }$ Use long division to divide 3 -digit and 4 -digit numbers by 'friendly' 2 -digit numbers Refine accuracy of solutions: Any 'remainders' should be shown as fractions, and extended to	(including decimals up to 2dps and $\begin{aligned} & 365 \div 17= \\ & 021 \cdot 47 \ldots \\ & 1 7 \longdiv { 3 ^ { 3 } 6 ^ { 2 } 5 ^ { 8 } 0 ^ { 1 2 } 0 0 } \end{aligned}$
	MASTERY - The Big Ideas (NCETM) Standard written algorithms use the conceptual structures of the mathematics to produce efficient m Standard written multiplication method involves a number of partial products. For example, 36×24 There are connections between factors, multiples and prime numbers and between fractions, division It is correct that $273 \times 32=8736$. Use this fact to work out: All the pupils in a sch 27.3×3.2 $87.36 \div 27.3$ the seaside for a scho 2.73×32000 $8736 \div 16$ They voted, and the r \qquad $873.6 \div 0.32$ $4368 \div 1.6$ 125 children voted in How many children v	ethods of calculation. is made up of four partial products $30 \times 20,30 \times 4,6 \times 20,6 \times 4$. and ratios. ool were asked to choose between an adventure park and ol trip. sult was a ratio of 5:3 in favour of the adventure park. favour of going to the adventure park. oted in favour of going to the seaside?	Vocabulary extending multiplication with tenths, hundredths and decimals Common factor Divide, Division, Divisible Divisor, Dividend, Quotient, Remainder Factor

FRACTIONS

Year 3	Begin to add like fractions e.g. $3 / 8+1 / 8+1 / 8$ Recognise fractions that add to 1 e.g. $1 / 4+3 / 4$ e.g. $3 / 5+2 / 5$ Begin to subtract like fractions e.g. $7 / 8-3 / 8$
Year 4	Add like fractions using the Singapore method to support this; Add like fractions using the Singapore method to support this; Be confident with fractions that add to 1 and fraction complements to 1 e.g. $2 / 3+_{+}=1$ Subtract like fractions :e.g. $4 / 5-3 / 5=1 / 5$ Use fractions that add to 1 to find fraction complements to 1 e.g. $1-2 / 3=1 / 3$
Year 5	Begin to add related fractions using equivalences e.g. $1 / 2+1 / 6=3 / 6+1 / 6$ Begin to subtract related fractions using equivalences e.g. $1 / 2-1 / 6=3 / 6-16=2 / 6$ Find simple percentages of amounts e.g. $10 \%, 5 \%, 20 \%, 15 \%$ and 50% Begin to multiply fractions and mixed numbers by whole numbers ≤ 10 e.g. $4 \times 2 / 3=8 / 3=22 / 3$ Find non-unit fractions of large amounts $\frac{5}{12} \text { of } 84=\frac{84 \times 5}{12}=\frac{420}{12}=35 \text { or } 84 \div 12=77 \times 5=35$ Turn improper fractions into mixed numbers and vice versa $\frac{20}{3}=20 \div 3=62 / 3 \quad 3 \frac{2}{5}=3+\frac{2}{5}=\frac{15}{5}+\frac{2}{5}=\frac{17}{5}$

Subtract mixed numbers and fractions with different denominators

```
5\frac{3}{8}-3\frac{5}{6}=2\frac{29-20}{24}=\frac{133-20}{24}=1\frac{13}{24}
```

Multiply fractions and mixed numbers by whole numbers
$6 \times \underline{2}=\underline{12}=2 \underline{2} \quad 2 \underline{1} \times 5=\underline{9} \times \underline{5}=\underline{45}=11 \underline{1}$

Multiply fractions by proper fractions $\underline{3} \times \underline{8}=\underline{24}=\underline{2}$
$4 \quad 9 \quad 363$
$4 \quad 9 \quad 36 \quad 3 \quad$ or $\quad 1 / 4 \quad \not 23 \quad 3$
$1 \underline{3} \times \underline{8} 2=2$

Use percentages for comparison and calculate simple percentages

1) Keep me
2) Change me
3) Flip me

MEMORIZE

(2)

$$
\left(\frac{a}{b} \div \frac{c}{d}\right.
$$

